Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ai-Yun Fu, ${ }^{\text {a }}$ * Da-Qi Wang ${ }^{\text {b }}$ and De-Zhi Sun ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Dezhou University, Shandong Dezhou 253023, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry,
Liaocheng University, Shandong Liaocheng 252059, People's Republic of China

Correspondence e-mail:
aiyunfu@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.036$
$w R$ factor $=0.071$
Data-to-parameter ratio $=15.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
catena-Poly[[bis(ethylenediamine- $\left.\kappa^{2} N, N^{\prime}\right)$ copper(II)]-μ_{3}-1,2-dicyanoethylenedithiolato- $\kappa^{4} N: S, S^{\prime}: N^{\prime}-[(1,2-$ dicyanoethylenedithiolato $-\kappa^{2} S, S^{\prime}$)cuprate(II)]]

The title complex, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]_{n}$, consists of centrosymmetric $\quad\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\right]^{2-}$ anions and $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]^{2+}$ cations. The $\mathrm{Cu}^{\text {II }}$ atom in each anion shows a slightly distorted square-planar coordination, comprising four S-atom donors from two chelating 2,3dimercaptobutenedinitrile ligands. The $\mathrm{Cu}^{\mathrm{II}}$ atom in the cation is six-coordinated by four N -atom donors from two ethylenediamine ligands and two N -atom donors from 2,3dimercaptobutenedinitrile, and has an elongated octahedral environment. The asymmetric unit contains one cation and two half-anions. The cations and anions are connected by $\mathrm{Cu}-\mathrm{N}$ (nitrile) bonds to form a one-dimensional chain along the a axis. The crystal structure is stabilized by hydrogen bonds of the types $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$, forming a threedimensional network.

Comment

The title compound, (I), is the first structurally characterized complex of a transition metal with both 2,3dimercaptobutenedinitrile (mnt) and ethylenediamine (en) ligands. It consists of $\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\right]^{2-}$ anions and $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]^{2+}$ cations.

As shown in Fig. 1, atom Cu 1 is chelated by two mnt ligands via four S atoms. The $\mathrm{Cu}-\mathrm{S}$ bond lengths are in the range 2.2304 (13)-2.2854 (12) \AA (Table 1). The trans angles of the CuS_{4} square plane are 152.00 (5) and $149.00(5)^{\circ}$, and the other angles around Cu 1 are close to 90°, indicating a distorted square-planar geometry. Atom Cu 2 is surrounded by four N atoms from two en ligands and two nitrile N atoms from mnt ligands of different anions (Fig. 2). The three trans angles are all exactly 180° by symmetry, as Cu2 lies on an inversion centre. The bonds between Cu 2 and nitrile N are longer than those to amine N (Table 1), indicating an elongated octahedral geometry. The coordination geometry of Cu 3 , also on an inversion centre, is very similar to that of Cu 2 (Table 1).
The mnt ligands adopt two forms of coordination; one chelates only via two S atoms, and the other also bridges two

Received 13 September 2004
Accepted 27 October 2004
Online 20 November 2004

A view of the asymmetric unit of (I), together with additional atoms to complete the en ligands, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity.

Figure 2
Fragment of the crystal structure of (I), showing the polymeric chain running along the a axis. H atoms have been omitted.
adjacent Cu atoms via two nitrile N atoms. Through this bridging mode the cations and anions are connected, forming an infinite chain along the a axis, as shown in Fig. 2. This situation is very different from the corresponding complex with $\mathrm{Cd}^{\text {II }}$ replacing $\mathrm{Cu}^{\text {II }}$ in the cation (Wang et al., 2004), which contains discrete ions. All the amine N atoms of the en ligands, and mercapto S and uncoordinated nitrile N of the mnt ligands participate in intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds, by which adjacent inversion-related chains are interconnected, forming a three-dimensional network (Table 2 and Fig. 3).

Experimental

$\mathrm{H}_{2} \mathrm{mnt}(1.0 \mathrm{mmol})$ and $\mathrm{NaOH}(2.0 \mathrm{mmol})$ were dissolved in ethanol $(20 \mathrm{ml})$. To this solution were added en $(1.0 \mathrm{mmol})$ and an ethanol solution (30 ml) of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol})$ dropwise at 313 K . The mixture was stirred for 4 h and some of the solvent was removed in a rotary vacuum evaporator. The resulting solution was filtered and left in the air for about 6 d . Large blue crystals of (I) were obtained. Elemental analysis found: C 27.25 , H 3.00, N 21.11 , S 24.25%; calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cu}_{2} \mathrm{~N}_{8} \mathrm{~S}_{4}$: C 27.31, H 3.06, N 21.24, S 24.31%.

Figure 3

Crystal packing of (I), showing the hydrogen-bonded interactions as dashed lines.

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{4} \mathrm{~N}_{2} \mathrm{~S}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$	$Z=2$
$M_{r}=527.65$	$D_{x}=1.689 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=9.535(3) \AA$	Cell parameters from 1885
$b=9.720(3) \AA$	reflections
$c=11.955(4) \AA$	$\theta=2.2-24.8^{\circ}$
$\alpha=96.928(4)^{\circ}$	$\mu=2.47 \mathrm{~mm}^{-1}$
$\beta=95.608(4)^{\circ}$	$T=293(2) \mathrm{K}$
$\gamma=107.680(4)^{\circ}$	Plate, blue
$V=1037.3(5) \AA^{3}$	$0.50 \times 0.40 \times 0.10 \mathrm{~mm}$
Data collection	
Bruker SMART CCD area-detector	3626 independent reflections
\quad diffractometer	2487 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.019$
Absorption correction: multi-scan	$\theta_{\text {max }}=25.0^{\circ}$
$\quad(S A D A B S ;$ Bruker, 1997)	$h=-10 \rightarrow 11$
$T_{\text {min }}=0.372, T_{\text {max }}=0.791$	$k=-11 \rightarrow 9$
5482 measured reflections	$l=-11 \rightarrow 14$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0236 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$S=1.00$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.49 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.36 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Cu} 1-\mathrm{S} 3$	$2.2304(13)$	$\mathrm{Cu} 2-\mathrm{N} 6$	$2.013(3)$
$\mathrm{Cu} 1-\mathrm{S} 1$	$2.2506(12)$	$\mathrm{Cu} 2-\mathrm{N} 4$	$2.576(3)$
$\mathrm{Cu} 1-\mathrm{S} 4$	$2.2605(12)$	$\mathrm{Cu} 3-\mathrm{N} 7$	$1.984(3)$
$\mathrm{Cu} 1-\mathrm{S} 2$	$2.2854(12)$	$\mathrm{Cu} 3-\mathrm{N} 8$	$2.010(3)$
$\mathrm{Cu} 2-\mathrm{N} 5$	$1.997(3)$	$\mathrm{Cu} 3-\mathrm{N} 3$	$2.729(3)$
$\mathrm{S} 3-\mathrm{Cu} 1-\mathrm{S} 1$	$152.00(5)$	$\mathrm{N} 5-\mathrm{Cu} 2-\mathrm{N} 4$	$95.69(12)$
$\mathrm{S} 3-\mathrm{Cu} 1-\mathrm{S} 4$	$92.68(4)$	$\mathrm{N} 6-\mathrm{Cu} 2-\mathrm{N} 4$	$91.94(12)$
$\mathrm{S} 1-\mathrm{Cu} 1-\mathrm{S} 4$	$95.17(5)$	$\mathrm{N} 4^{\mathrm{i}}-\mathrm{Cu}-\mathrm{N} 4$	180
$\mathrm{~S} 3-\mathrm{Cu} 4-\mathrm{S} 2$	$95.40(5)$	$\mathrm{N} 7^{\mathrm{ii}}-\mathrm{Cu} 3-\mathrm{N} 7$	180
$\mathrm{~S} 1-\mathrm{Cu} 1-\mathrm{S} 2$	$91.57(5)$	$\mathrm{N} 7-\mathrm{Cu} 3-\mathrm{N} 8^{\mathrm{ii}}$	$84.67(14)$
$\mathrm{S} 4-\mathrm{Cu} 1-\mathrm{S} 2$	$149.00(5)$	$\mathrm{N} 7-\mathrm{Cu} 3-\mathrm{N} 8$	$95.33(14)$
$\mathrm{N} 5^{\mathrm{i}}-\mathrm{Cu} 2-\mathrm{N} 5$	180	$\mathrm{~N} 8^{\mathrm{ii}}-\mathrm{Cu} 3-\mathrm{N} 8$	180
$\mathrm{~N} 5^{\mathrm{i}}-\mathrm{Cu} 2-\mathrm{N} 6$	$83.95(14)$	$\mathrm{N} 7-\mathrm{Cu} 3-\mathrm{N} 3^{\mathrm{ii}}$	$85.59(12)$
$\mathrm{N} 5-\mathrm{Cu} 2-\mathrm{N} 6$	$96.05(14)$	$\mathrm{N} 7-\mathrm{Cu} 3-\mathrm{N} 3$	$94.41(12)$
$\mathrm{N} 6^{\mathrm{i}}-\mathrm{Cu} 2-\mathrm{N} 6$	180	$\mathrm{~N} 8^{\mathrm{ii}}-\mathrm{Cu} 3-\mathrm{N} 3$	$90.77(12)$
$\mathrm{N} 5-\mathrm{Cu} 2-\mathrm{N} 4^{\mathrm{i}}$	$84.31(12)$	$\mathrm{N} 8-\mathrm{Cu} 3-\mathrm{N} 3$	$89.23(12)$
$\mathrm{N} 6-\mathrm{Cu} 2-\mathrm{N} 4^{\mathrm{i}}$	$88.06(12)$	$\mathrm{N} 3^{\mathrm{ii}}-\mathrm{Cu} 3-\mathrm{N} 3$	180

Symmetry codes: (i) $2-x, 2-y, 1-z$; (ii) $1-x, 1-y,-z$.

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N5-H5A \cdots N $1^{\text {iii }}$	0.90	2.14	3.039 (5)	176
N5-H5B \cdots S $1^{\text {iv }}$	0.90	2.82	3.632 (3)	151
N6-H6A \cdot S $1^{\text {iv }}$	0.90	2.70	3.513 (3)	151
N6-H6B $\cdots \mathrm{N} 2{ }^{\text {iii }}$	0.90	2.26	3.098 (5)	155
N7-H7A \cdots S1 ${ }^{\text {v }}$	0.90	2.54	3.369 (3)	154
N7-H7B \cdots S ${ }^{\text {vi }}$	0.90	2.77	3.621 (4)	158
$\mathrm{N} 8-\mathrm{H} 84 \cdots$ S2 ${ }^{\text {vi }}$	0.90	2.67	3.547 (4)	163

Symmetry codes: (iii) $3-x, 2-y,-z$; (iv) $x, y, 1+z$; (v) $2-x, 2-y,-z$; (vi) $x-1, y, z$.

All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$, or with $\mathrm{N}-\mathrm{H}=0.90 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve
structure: SHELXS 97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the Science and Technology Office of Dezhou City, Shandong Province, People's Republic of China, for research grant No. 030701.

References

Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Wang, D.-Q., Fu, A.-Y. \& Dou, J.-M. (2004). Acta Cryst. E60, m1872m1874.

[^0]: (C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

